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Abstract 
Thermal diffuse scattering is the dominant contribution 
to the absorptive form factors in high-energy electron 
diffraction. So far, calculations have been limited to 
isotropic thermal vibrations. In this paper, a general 
formula is given for the absorptive form factors that 
fully accounts for anisotropic temperature factors. The 
resulting formula is based on the Einstein model and 
well suited for numerical evaluation. A case study 
shows that even slight deviations from isotropy lead to a 
strong directional dependence of the absorptive form 
factors. 

the computation of absorption potentials without 
detailed knowledge of phonon dispersion relations. 
Therefore, we will also use this model as the basis of our 
calculations. Isotropic vibrations are strictly found only 
for atoms with cubic site symmetry. Here we generalize 
the treatment of TDS to cope also with anisotropic 
vibrations which lead to an anisotropic absorption 
potential. 

In §2, we will give a brief summary of the Yoshioka 
theory. §3 deals with the evaluation of the TDS 
contribution for both cases, isotropic and anisotropic 
vibrations. A numerical example is given in §4. 

1. Introduction 

For the quantitative simulation of energy-filtered elastic 
electron diffraction patterns, inelastic scattering has to 
be taken into account properly (Spence & Zuo, 1992). 
Electrons that are scattered inelastically are either 
removed from the beam by the energy filtering unit 
(energy loss more than 5 eV) or scattered into angles 
different from Bragg angles (thermal diffuse scattering, 
TDS) and are thus not measured by the observer. From 
a simple point of view, these electrons have been 
absorbed. Also, from a theoretical point of view, the 
influence of inelastic scattering can be incorporated into 
dynamical theory by means of an absorption potential. 
It has been shown by Yoshioka (1957) that this is 
correct in the framework of a first-order perturbation 
theory. 

An equation to calculate the contribution of TDS to 
the absorption has been given by Hall & Hirsch (1965) 
on the basis of a phenomenological discussion. Later it 
was shown by Radi (1970) that TDS is the dominant 
term in the absorption potential. Subroutines for 
convenient and accurate computation of this term have 
been provided for example by Weickenmeier & Kohl 
(1991). 

In the treatment of TDS, two major approximations 
have been used so far: the Einstein model (each atom is 
an independent harmonic oscillator) and the isotropy of 
the atomic vibrations. The first approximation is moti- 
vated by the fact that only the Einstein model allows 

O 1998 International Union of.Crystallography 
Printed in Grea t  Britain - all rights reserved 

2. Basic equations 
A very detailed study of the perturbative treatment of 
inelastic scattering has been given by Yoshioka (1957). 
In this section, we recall the major steps of his calcu- 
lations that led to an absorption potential. 

The time-independent Schr6dinger equation for the 
fast electron and the crystal is given by 

Ha, = e~,. (1) 

Here, E is the total energy of the system. The Hamil- 
tonian 

H = H e + H k + H' (2) 

is composed of the kinetic energy of the fast electron 

H e = (It 2/2m)A, (3) 

the crystal Hamiltonian Hk and the interaction 

n '  = (eZ/4re0) 1/Ir - rjl - Zk/Ir -- Rkl • (4) 
k=l 

These two terms denote the Coulomb potential 
between the fast electron and the crystal electrons 
(coordinates rj) and between the fast electron and the 
nuclei (coordinates Rk), respectively, e is the electron 
charge and e0 the dielectric constant. Here, we neglect 
exchange and correlation interaction. For further 
treatment, we assume/-/1 << He. 
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We consider the complete or thonormal  system of 
eigenfunctions an of Ilk, 

Hkan -- Ga,,, (5) 

(a,,lam) = (~,m, (6) 

to be known. We expand the wave function • using the 
eigenfunctions of Hk: 

dp -- ~_, q)n(r)an(rl . . . . .  rl, R 1 . . . . .  RL). (7) 
n 

We are only interested in the 'elastic' solution q)0(r), 
which means  the crystal remains in the initial state ao. 
Making the Bloch wave ansatz 

q)o = exp[ikr] y~ c h exp[ihr], (8) 
h 

we eventually obtain after some steps (cf. Yoshioka, 
1957) the well known dispersion equat ion of the 
dynamical  theory: 

[ ~  - (k + g)2]cg + Y~ Ug_hC h = -- E VghCh" (9) 
h h 

The term on the r ight-hand side is given by 

vgh = % + i% .  (10) 

Both terms are of second order  in H t. However ,  U~, can 
be unders tood as a small correction to Ug_h and is 
therefore  neglected. The remaining term iU~h is anti- 
hermitic and introduces an imaginary part  of the wave 
vector k, leading to a decay of the elastic wave function 
~Oo as a function of penet ra t ion  depth. According to 
Yoshioka (1957), U~, is given by the surface integral 

U~ -- --(mZ/2n'ZhaV) E f d 2 K  
n¢0 K=k, 

x E0n(k + g - K)E,0(K - k - h)/Zk,,, (11) 

where 

and ¸ 

= (2m/hZ) (E-  e,,), (12) 

E0,(q ) = f d3r H~, exp[ - iq r ]  (13) 

H/m/ ' /  " - -  ! (amlH la,). (14) 

Fur thermore ,  the electron rest mass is denoted by m 
and V is the volume of the unit cell. The structure 
factors Ug in (9) are defined as 

Ug = (2m/Vh 2) f d3r exp[-igr]H~0(r).  (15) 

3. Treatment of TDS 

For the exact t rea tment  of TDS, we need to know the 
crystal wave functions an. But  even then the computa-  

ti0n of the U~h would still be very tedious. Therefore,  we 
limit our investigation to simple approximations.  

First we want  to simplify (11). The U~h are defined as 
a surface integral, where the integration variable K lies 
on a sphere with radius k,,. Since we only treat  TDS we 
have K,, "" k 0 and accordingly K _~ k 0. This means  that  
the sphere is to very good approximat ion the Ewald 
sphere. Fur thermore ,  for practical applications, we 
consider only reflections g in the Bloch-wave function 
(8) with k + g close to the Ewald sphere. Therefore,  
replacing U~h by U~-h and kn by k0 introduces a negli- 
gible error. We thus have 

U'g = - ( m  2 / 2 7 r 2 h 4 V ) ~  f dZK 
n#O K=k o 

x E0,,(k -- K)E,0(K - k -- g) /2k  0. (16) 

In the next step, we have to approximate  the Fourier- 
t ransformed matrix elements Eo,(q) to allow for a 
general  evaluation. First we apply the B o r n - O p p e n -  
heimer  approximation,  which allows the separat ion of 
the wave function n of the nuclei f rom the electronic 
part  ~Pn. In the next step, we neglect all bonding effects 
on the electron wave functions, i.e. we choose f ree-a tom 
wave functions for the electrons. This is an excellent 
approximat ion for the deeply bound core electrons and 
introduces only a very small error  for the atomic 
potentials. Accordingly, each electron can be at t r ibuted 
to a fixed a tom and the crystal wave function can be 
written as 

a,, = n(R 1 . . . . .  RL)tItn(rll -- R 1 . . . . .  rz11 - R, ,  

r12 - -  R 2 . . . .  ), (17) 

where r i /denotes  the coordinate of electron i of a tom j. 
Now we insert (17) into (13) and obtain 

En, n(q) = (e2/4yre0) f d 3 r  d v  e d v  K exp[--iqr]n'*n~*~, k~l n 

) x ~ l / I r  - rul - ~ Zs/Ir  - Rsl (18) 
=1 i=l j=l 

with 
L 

drK -- I-I d3Ry, (19) 
]=1 

dr = h  zj I-I d3rij, (20) 
3=1 i= I  

and an additional summation over the spin coordinates. :- 
Neglecting e lec t ron-phonon interaction, we may set 
~Pn' = qJn. Since the second term does not depend on 
the electron coordinates, we may perform the dye 
integration. With the normalizat ion f d r e  IqJn[ 2 = 1, we 
simply obtain the potential  of the nuclei, 

VsK(r --  RS) = - -  ( e 2 1 4 r , : e o ) Z s l l r  - -  Rsl, (21 )  

of the individual atoms. The first term results in the 
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electron potentials 

L zj 
(e2/nyre0) ~ ~ f dr  e ]~nl2/I r - ri/], (22) 

/=1 i=1 

which can be interpreted as the sum of atomic electron 
potentials 

L 

VT(r - R/). (23) 
/ = 1  

Accordingly, we obtain for E,,,n: 

En,,,(q ) -- (4:rrh z/2m) ~ fj(q) f a r  k n'*n exp[- iqRj]  
J 

= (47chZ/2m) ~f/(q)(n'lexp[-iqRj]]n), (24) 
J 

where ft.(q) denotes the atomic scattering amplitude of 
atom j to first-order Born approximation, which is 
proportional to the Fourier transform of the potential 
o f  a t o m  j. W e  inser t  th is  r e s u l t  in (16) .  T h e n ,  t h e  F o u r i e r  

coefficient of the absorption potential is given by 

U'g = - (1/ko V) ~ ~ f d2K f/(k - K)fy(K - k - g) 
jj' n#O K=k o 

× ( O l e x p [ - i ( k -  K)Rj]In) 

× (nlexp[- i (K - k - g)Ry][0). (25) 

We add and subtract the term n = 0. Making use of the 
completeness 1 = Y~ In)(hi of the basis In), we have 

In) (nl -- 1 - 10)(01 (26) 
nO0 

and thus 

U'g = - (1 /koV)  ~ f d2K f j (k- -  K f f y ( K - - k -  g) 
/j' K=ko 

× { (0lexp[i(K - k)R/] exp[ - i (K - k - G)Rj,]]0) 

- (0[exp[ i (K-  k)Rj][0) 

× (0]exp[-i(K - k - g)Rj,]]0) }. (27) 

We see that the absorption coefficients (also the struc- 
ture factors) depend on the initial state of the crystal. 
As a consequence, for a strict treatment,  the dispersion, 
equation (9), has to be solved for each possible initial 
state of the solid, followed by an appropriate averaging 
procedure. To avoid this tedious and time-consuming 
task, the absorption potential as well as the real 
potential are replaced by averages. For the structure 
factors, this leads to the well known temperature 
factors. The absorption coefficients are written as the 
thermal average over all phonon states: 

Pn{ (nlexp[i(K -- k)R/] exp[--i(K - k -- g)R/,]ln) 
n 

- (nlexp[i(K - k)Rj]ln) 

× (nlexp[-i(K - k - g)R/,]ln) }. (28) 

Here, p,, denotes the probability for the crystal being in 
the phonon state In). 

It is quite clear that the result of (28) does depend on 
• the phonon spectrum of the specimen. Since we do not 
intend to resolve particular phonon modes or analyze 
the direction dependence of the phonon scattered 
electrons but integrate over all directions K and 
average over all states In), we will introduce only a 
small error by applying the Einstein approximation. 
This allows (28) to be evaluated without prior study of 
phonon states. 

In the Einstein model, the thermal motion of the 
atoms is uncorrelated and the wave functions and 
probability distributions can be factorized into single: 
atom terms 

n(R 1 . . . . .  RL) = n l (R1) . . ,  nt(RL) (29) 

p,,  = p ° ) ( n l ) p ( 2 ) ( n g .  . . p ( '~ ) (n ,3  (30) 
~_,p(~)(n) = 1. (31) 
nj 

Here, p(i)(n) denotes the probability that atom j is in 
the state In/). Then, the terms with j 7~ j' in (28) vanish 
and we have 

~-~ p(J)(n){ (n/lexp[igRj]ln/) 
nj 

- (njlexp[i(g - k)Rj]lnj) 

x (nj lexp[-i(K -- k -- g)Rj]lnj) }. (32) 

We now decompose the vector Rj pointing to the atom j 
into a static vector to the ideal lattice position R~ °) and a 
thermal displacement uj. The phases depending on R~ °) 
can be extracted and we keep the notation Rj for the 
static positions. Then we obtain 

u'g = (l/V) ~ exp[igRj] g(g)  (33) 
J 

with the definition 

f/(g).= -(1/ko)  f d 2 K f j ( k - K ) f j ( K - k - g )  
K = k  o 

x ~--2~ p(J)(nj){ (njlexp[iguj]lnj) 
nj 

- (njlexp[i(K - k)uj]lnj) 

x (njlexp[--i(K - k - g)uj]lnj)} (34) 

of the absorptive form factor for atom j. In Appendix 
A, we compute the thermal averages 

I ( K )  = ~_,p(n)(nlexp[iKr]ln) (35) 
n 

J(K, K') = y'~p(n)(nlexp[iKr]ln)(nlexp[--iK'r]ln) 
n 

(36) 

in the harmonic approximation. 
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3.1. T h e  i s o t r o p i c  c a s e  

Atoms in cubic site symmetry vibrate isotropically. In 
this case, the thermal vibrations of each atom j are 
characterized by one number, the thermal mean square 
displacement (u 2) and we obtain for the absorptive 
form factor 

f/(g) = - ( l / k 0 )  f dZK f / ( k - K ) f / ( K - k - g )  
K-----k o 

x {exp[-½ <uf>g z] - exp[ - 1  (uf)(K - k) 2] 

x exp[--½ ( u 2 ) ( K  - k - -  g)2] 

x I o [ ( K  - -  k ) ( K  - k - g ) ( ( u 2 )  2 - -  (u2j)2)l/2]}. 
(37) 

For temperatures well below the Einstein temperature, 
2 the mean square displacement (u)) is close to the zero 

temperature value (u2j). Then the argument of the 
modified Bessel function I0 is close to zero and the 
Bessel function may be replaced by unity. We then 
obtain the expression 

g(g) ~ - ( 1 / k o )  f d2K fj(k - K)fj(K - k - g) 
K=k o 

x {exp[--½ (u2)g 2] -- exp[--½ (uf)(K - k )  2] 

x exp[--½ (u2)(K -- k -- g)2]}. (38) 

• This equation has also been derived by Hall & Hirsch 
(1965) using more phenomenological arguments. They 
implicitly assumed that the crystal is in the ground state, 
which is only true for zero temperature. It can be shown 
that ignoring the Bessel function leads to slightly 
smaller values of if(g). Using an appropriate par- 
ameterization for the elastic scattering amplitudes y~(g), 
(38) can be integrated analytically (Weickenmeier & 
Kohl, 1991) 

3.2. T h e  a n i s o t r o p i c  c a s e  

We can evaluate (34) also in the case of anisotropic 
vibrations. We assume that the thermal vibration matrix 
is diagonal and the principal axes coincide with the x y z  

coordinate system. Then, the absorptive form factor is 
given by (see Appendix A) 

f f (g)--  - ( l / k 0 )  f dZK f j ( k -  K ) f j ( K - k -  g) 
K =ko • 

x (exp[- + + 

- -  e x p { - ½ ( U 2 x ) [ ( k x  - K x )  2 + ( K x  - k x - gx)2]} 

x I o [ ( k  x - K x ) ( K  x - k x - g~)((U2x) 2 - (H20z)2) 1/2] 

x e x p { - l ( u 2 y ) [ ( k y  - g y )  2 + ( g y  - k y  - gy)2]} 

x i0 [ (ky  - K y ) ( K y  - k y  - 2 - (Uy0y)2)l/21 

x exp{-½ (U2z)[(kz - K z )  2 + ( K  z - -  k z - -  gz)2]} 

x Io[(k z -- K z ) ( K  z - k z - g z )  

X ((H2z ) 2 -  (U20z)2) l /2]) .  (39) 

In the limit of low tempeatures, we may again approx- 
imate the modified Bessel function by unity and obtain 
the simpler expression 

( 1 / k o )  f d 2 K  - - k - g)  
K=k o 

x (exp[-½((Ufx)~ + (u2,)~ + (Ufz)~)] 

- exp{-  ½ (U2x)[(kx - K,,) 2 + ( K  x - k x - gx)2]} 

X exp{--½ (U2y)[(ky  - g y )  2 --~ ( K y -  k y  - gy)2]} 

x e x p { - ½ ( u 2 z ) [ ( k z  - Kz) 2 + ( K  z - k z - -  g z ) 2 ] } ) .  

(40) 

In the general case, no coordinate system exists in 
which the displacement matrices are diagonal for all 
atoms in the unit. Accordingly, we define the temper- 
ture factor as (see e.g.  Willis & Pryor, 1975) 

Tj(k) -- exp[-- ½k rM/k] (41) 

with the atomic displacement matrix M being no longer 
diagonal. Then, the anisotropic absorptive form factor 
is given by the general form 

f / ( g )  '~  - ( 1 / k o )  f d 2 K f j ( k - - K ) f j ( K - - k - - g )  
K=k o 

x {T/(g) - Tj(k - K)Tj(K - k - g)}. (42) 

It should be kept in mind, however, that (40) can be 
derived from (42) v i a  a coordinate transformation. 

4. A case study 

As an example, we study the anisotropy of the 
absorptive form factor for an aluminium atom located 
at a position that allows anisotropic vibrations. We keep 
the average mean square displacement 

(U 2 ) 1 2 = g((Ux) + + (43) 

constant at 0.0025 A 2 with (u 2) = (u 2) and 
( u 2 ) / ( u  2) -- ot 2. Equation (40) is evaluated by numerical 
integration. The values for the elastic scattering 
amplitudes are calculated using the F S C A T T  subrou- 
tine (Weickenmeier & Kohl, 1991). The computed 
absorptive form factors are depicted in Figs. i and 2 for 
ot = 1.1 and ot - -  21 /2 ,  respectively, as a function of the 
modulus s = g/(4rr) of the scattering vector. Relativistic 
effects due to the acceleration voltage of 120 kV are 
included in the atomic scattering amplitudes. The wave 
vector k of the incident beam is along the y axis and we 
give the absorptive form factors for g along the x and z 
axes, respectively. For comparison, the result for the 
isotropic case with the average mean square displace- 
ment is also plotted. 

From Figs. 1 and 2, we see that for s -- 0 there is no 
directional dependency and we thus obtain the same 
result for the isotropic and anisotropic cases. For 
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increasing s, the anisotropy becomes increasingly 
important. As can be seen from Fig. l(a), even for a 
very small deviation from isotropy (or -- 1.1) the ratio of 
the absorptive form factors for the two different 
directions is significant. For better visibility, the form 
factors multiplied with (1 + s2/s 2) are plotted in Fig. 
l(b). In the range of s values between 0.5 and 3 A -  , 
which is most important for electron diffraction, the 
ratio exceeds a factor of two. Figs. 2(a) and (b) show the 
corresponding curves for ct = 21/2. As expected, the 
direction dependency increases with increasing aniso- 
tropy of the temperature factor. Figs. 1 and 2 also 
indicate that using the isotropic formula with an aver- 
aged mean square displacement is only a good 
approximation for very small deviations (ct < 0.1) from 
isotropy. 
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Fig. 1. (a) The anisotropic absorptive form factor for a = 1.1 for g 
along the x direction (dotted line) and along the z direction 
(dashed line). The solid line gives the isotropic result for the 
average mean square displacement. (b) Same cuves as in (a) but 
multiplied by (1 + s2/s 2) with so = 1 A - I  to show the large ratio of 
the form factors for different directions. 

5. Discussion 

The influence of inelastic scattering processes on the 
elastic wave function has been incorporated into the 
dynamical theory of electron diffraction by Yoshioka 
(1957). He introduced an absorption potential, which is 
quantum-mechanically correct to first-order Born 
approximation. Here, we discuss the contribution of 
thermal diffuse scattering to the absorption potential. 
In particular, the effect of anisotropic vibrations is 
studied for the first time. For the special case of 
isotropic vibrations and low temperatures, the expres- 
sion given by Hall & Hirsch (1965) is reproduced. 

In order to obtain a general formula, we have to use 
the Einstein approximation, which treats each atom as 
an independent harmonic oscillator. This appears to be 
a contradiction in itself: for high temperatures (near the 
melting point), the vibrations are weakly correlated but 
also the harmonic approximation breaks down and 
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Fig. 2. (a) Same curves as in Fig. l (a)  but for a = 21/2. (b) Same curves 
as in Fig. l (b)  but for a = 21/2. 
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should not be used. On the other hand, the thermal 
motion of the atoms is highly correlated at tempera- 
tures well below the Debye temperature. However, 
since its publication, the formula given by Hall & 
Hirsch (1965) has been successfully used as the basis for 
the calculation of the absorptive form factor. This is 
because no attempt is made to calculate the contribu- 
tion of individual phonon states but an average is taken 
over all states. Also, electrons scattered out of the 
Bragg beams by TDS are considered as absorbed 
without asking in which particular direction they might 
have been scattered. Again, this leads to an integration 
over final states and to a smaller sensitivity to a parti- 
cular state, thereby reducing t h e  errors due to the 
choice of the Einstein model. 

The influence of the anisotropic mean square 
displacement has been studied using aluminium as the 
scattering atom. We find that even for a small aniso- 
tropy the absorption potential is strongly direction 
dependent and the ratio of the absorptive form factors 
for different directions can exceed a value of 2. 
Therefore, the isotropic formula cannot be used as an 
approximation to the anisotropic fomula derived here. 
However, numerical evaluation of (40) is straightfor- 
ward and can be done in acceptable computing time. A 
computer subroutine programmed in standard 
Fortran77 is available on request. 

APPENDIX A 

We have to calculate the expressions 

I(K) = y'~p(n)(nlexp[iKr][n) (44) 
n 

and 

' J (K,  K') = y~p(n)(nlexp[iKr][n)(nlexp[-iK'r]ln).  
n 

(45) 

• We will limit our calculations to the harmonic approx- 
imation. Therefore, the states In) are the eigenstates of 
the three-dimensional harmonic oscillator. We chose a 
Cartesian coordinate system xyz,  which coincides with 
the principal axes of the thermal displacement matrix 
(i.e. in this system the vibration matrix is diagonal) of 
the specified atom. We want to point out that these axes 
are not necessarily parallel to the basis vectors of the 
unit cell and also that for different atoms the principal 
axes might point in different directions. 

Using the Cartesian representation, the states In) as 
well as the probabilities p(n)  can be factorized in a 
product of three one-dimensional oscillator states and 
probabilities 

In) = Inx)lny)lnz) 

p(n)  = Px(nx)Pr(ny)pz(nz). 

For each coordinate i = xyz, we have 

Pi(n) = (1 - ~i)~//, 

~i = exp[--tic°Ei/(kB T)] 

(48) 

(49) 

with the Einstein frequency o)Ei and the Boltzmann 
constant kB. Also, the exponential exp[iKr] factorizes, 
therefore we can study each coordinate direction 
independently. For the next steps of the calculation, we 
use the creation and annihilation operators b +, b for the 
one-dimensional harmonic oscillator. We also need the 
relations 

exp[ix(b + + b)] = exP[½~]exp[ixb]exp[itcb +] (50) 

(nlexp[ixb]exp[ixb+]ln) = ~ ( n  + m)  (-x2) m (51) 
n m! 

m 

~p(n)(nlexp[ixb]exp[ixb+]ln)  = exp[--~(h + 1)], 
n 

(52) 

which can be found in standard text books (e.g. 
Davydov, 1971). Here, h denotes the expectation value 

h = ~ p ( n ) ( n l b + b l n )  
n 

= ~ / ( 1 -  ~). (53) 

In the first step, we calculate I(K) for one coordinate 
direction. We set 

Kxx = r(b + + b) (54). 

with 

¢ = (h/2mcoe) 1/2K x (55) 

and the atom mass m. Using (50) and (52), we obtain 

Y'~px(nx)(nxlexp[ix(b + + b)]lnx) = exp[--½ (ux)K¢,]2 2 
n x 

(56) 

with the mean square displacement in the x direction 

(uZA = (h/mco~)(hx + ½). (57) 

After similar calculations for the yz  coordinate direc- 
• tions, we finally obtain 

I(K) = exp[ -  l((u2)K~ + (uy)g:2 2 _it_ (u2)/~z)]. (58) 

In the case of the isotropic oscillator 
(Ux z ) = ( @ ) = ( u  2 ) = ( u 2 ) ,  this reduces to the w e l l  

(46) known expression 

(47) I(K) = exp[ -  ½ (u2)K2]. (59) 
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For the calculation of J(K, K') we need some additional 
relations. The Laguerre polynomials are defined as 

-- n! {x ~ exp[-x]} (60) 

(see Hochstrasser, 1970). The generating function of 
these orthogonal polynomials is 

o o  

exp[ -x z / (1  -- z)] = (1 - z) ~_, z"L. (x)  (61) 
n = 0  

(Hochstrasser, 1970). Furthermore, the addition the- 
orem is 

From (63), it follows that 

F x = (1 - ~) exp [ -  ½(~ + t,:a)] )--~. ~"L.(x2)L,,(#2). 
n 

(68) 

Finally, we make use of (62) and obtain for each coor- 
dinate direction 

Fx = exp[-- ½(Z + ~ca)(1 + ~)/(1 -- ~)] 

X I012~1/2XK'/(1 -- ~)]. (69) 

After back substitution of ~, K, x', we obtain for the final 
result 

o o  

(1 - -  z) ~ z'~L,(x)L,,(y) 
n = 0  

= exp[--(x 4- y)/(1 -- z)Z]Io[2(xyz)l/2/(1 - z)] (62) 

(Bateman, 1953) with the modified Bessel function of 
zeroth order I0. After  some calculations, we find 

~ ( n  4 - m ) x  m 
n ~ -- exp[x]L, ( -x) .  (63) 

m----0 

We can now calculate J(K, K'), which can also be 
factorized: 

J(K, K') = Fx(Kx, K'x)Fy(Ky , K'y)Fz(Kz, K'z) (64) 

with 

Fx(K x, K'.) = ~'~ px(nx)(nxlexp[iKxx]lnx) 
n x 

x (nxlexp[-iK'xx][G) (65) 

and the corresponding terms for the yz coordinates. 
Therefore, it suffices to evaluate one coordinate direc- 
tion. In the first step, we insert the creation and anni- 
hilation operators and obtain 

F x = (1 - ~) ~ ~"(nlexp[ix(b + + b)]ln) 
n 

x (n lexp[ -M(b  + + b)]ln). (66) 

Inserting (50) and (51), we get 

F x -- (1 -- ~) exp[~Qc 2 -b ~/2)] 

× Z ~ n £ ( n 4 - m ) ( - - I ¢ 2 )  m 

n m! 
n m = O  

X m,~_~ ( n  + m ' )  (--/ca)"¢ ,_ n mq (67) 

J(K, K') = exp[-½ (u2)(K~ + K~)] 
t 2 2  

x Io[K~K'x(<Ux) - <U~x)~) 1/~] 
x exp[--½ (uy2)(/~y + Ky~)] 

t 22 
X Io[gyg'y((Uy ) - -  (U2y)2) 1/2] 
x exp[--½ (Uz2)(/~z 4- KzC2)] 

x Io[KzK'z((U2) 2 - -  (U2z)2)a/2]. (70) 

Here, (u2i)--h/(2mo)ei ) is tlae thermal mean square 
displacement at zero temperature for the coordinate i -- 
xyz. 

If the oscillator is isotropic, then we can derive a 
simpler expression. In this case, we find 

J(K, K') = exp [ -  ~ (uZ)(K 2 + K'2)] 

x Io[K1K'((u2) 2 - (u2)Z)l/2]. (71) 
. .  
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